
Interpretable Concept-Based Memory Reasoning

David Debot
KU Leuven

david.debot@kuleuven.be

Pietro Barbiero
Universita’ della Svizzera Italiana

University of Cambridge
barbiero@tutanota.com

Francesco Giannini
Scuola Normale Superiore

francesco.giannini@sns.it

Gabriele Ciravegna
DAUIN, Politecnico di Torino

gabriele.ciravegna@polito.it

Michelangelo Diligenti
University of Siena

michelangelo.diligenti@unisi.it

Giuseppe Marra
KU Leuven

giuseppe.marra@kuleuven.be

Abstract

The lack of transparency in the decision-making processes of deep learning sys-
tems presents a significant challenge in modern artificial intelligence (AI), as it
impairs users’ ability to rely on and verify these systems. To address this challenge,
Concept-Based Models (CBMs) have made significant progress by incorporating
human-interpretable concepts into deep learning architectures. This approach
allows predictions to be traced back to specific concept patterns that users can
understand and potentially intervene on. However, existing CBMs’ task predic-
tors are not fully interpretable, preventing a thorough analysis and any form of
formal verification of their decision-making process prior to deployment, thereby
raising significant reliability concerns. To bridge this gap, we introduce Concept-
based Memory Reasoner (CMR), a novel CBM designed to provide a human-
understandable and provably-verifiable task prediction process. Our approach is
to model each task prediction as a neural selection mechanism over a memory
of learnable logic rules, followed by a symbolic evaluation of the selected rule.
The presence of an explicit memory and the symbolic evaluation allow domain
experts to inspect and formally verify the validity of certain global properties of
interest for the task prediction process. Experimental results demonstrate that
CMR achieves better accuracy-interpretability trade-offs to state-of-the-art CBMs,
discovers logic rules consistent with ground truths, allows for rule interventions,
and allows pre-deployment verification.

1 Introduction

The opaque decision process of deep learning (DL) systems represents one of the most fundamental
problems in modern artificial intelligence (AI). For this reason, eXplainable AI (XAI) [1–3] is
currently one of the most active research areas in AI. Among XAI techniques, Concept-Based Models
(CBMs) [4–8] represented a significant innovation that made DL models explainable-by-design by
introducing a layer of human-interpretable concepts within DL architectures. CBMs consist of at
least two functions: a concept encoder, which maps low-level raw features (e.g. an image’s pixels) to
high-level interpretable concepts (e.g. “red” and “round”), and a task predictor, which uses the learned
concepts to solve a downstream task (e.g. “apple”). This way, each task prediction can be traced back

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

40
7.

15
52

7v
2

 [
cs

.A
I]

 1
5

N
ov

 2
02

4

to a specific pattern of concepts, thus allowing CBMs to provide explanations in terms of high-level
interpretable concepts (e.g. concepts “red” and “round” were both active when the model classified
an image as “apple”) rather than low-level raw features (e.g. there were 100 red pixels when the
model classified an image as “apple”). In other terms, a CBM’s task predictor allows understanding
what the model sees in a given input rather than simply pointing to where it is looking [9].

However, state-of-the-art CBMs’ task predictors are either unable to solve complex tasks (e.g. linear
layers), non-differentiable (e.g. decision trees), or black-box neural networks. CBMs employing
black-box task predictors are still considered locally interpretable, as concept interventions allow
humans to understand how concepts influence predictions for individual input examples. However,
they lack global interpretability: the human cannot interpret the model’s global behaviour, i.e. on
any possible instance. This prevents a proper understanding of the model’s working, as well as any
chance of formally verifying the task predictor decision-making process prior to deployment, thus
raising significant concerns in practical applications. As a result, a knowledge gap persists in the
existing literature: the definition of a CBM with a task predictor whose behaviour can be inspected,
verified, and potentially intervened upon before the deployment of the system.

To address this gap, we propose Concept-based Memory Reasoner (CMR), a new CBM where the
behaviour and explanations can be inspected and verified before the model is deployed. CMR’s
task predictor offers global interpretability as it utilizes a differentiable memory of learnable logic
rules, making all potential decision rules transparent to humans. Additionally, CMR avoids the
concept bottleneck that often limits the accuracy of interpretable models when compared to black-box
approaches. Our key innovation lies in an attention mechanism that dynamically selects a relevant
rule from the memory, which CMR uses to accurately map concepts to downstream classes.

CMR = neural selection

Accuracy

over a set of human-understandable decision-making processes

Interpretability

We call this paradigm Neural Interpretable Reasoning (NIR), which involves neurally generating (i.c.
selecting from memory) an interpretable model (i.c. a logic rule) and symbolically executing it. Once
learned, the memory of logic rules can be interpreted as a disjunctive theory, which can be used for
explaining and automatic verification. This verification can take place before the model is deployed
and, thus, for any possible input the model will face at deployment time. The concept-based nature
of CMR allows the automatic verification of properties that are expressed in terms of high-level
human-understandable concepts (e.g. “never predict class ‘apple’ when the concept ‘blue’ is active”)
rather than raw features (e.g. “never predict class ‘apple’ when there are less than ten red pixels”).

Our experimental results show that CMR: (i) improves over the accuracy-interpretability performances
of state-of-the-art CBMs, (ii) discovers logic rules matching ground truths, (iii) enables rule inter-
ventions beyond concept interventions, and (iv) allows verifying properties for their predictions and
explanations before deployment. Our code is available at https://github.com/daviddebot/CMR.

2 Preliminary

Concept Bottleneck Models (CBNMs) [4, 10] are functions composed of (i) a concept encoder
g : X → C mapping each entity x ∈ X ⊆ Rd (e.g. an image) to a set of nC concepts c ∈ C
(e.g. “red”, “round”), and (ii) a task predictor f : C → Y mapping concepts to the class y ∈ Y
(e.g. “apple”) representing a downstream task. For simplicity, in this paper, a single task class is
discussed, as multiple tasks can be encoded by instantiating multiple task predictors. When sigmoid
activations are used for concepts and task predictions, we can consider g and f as parameterizing a
Bernoulli distribution of truth assignments to propositional boolean concepts and tasks. For example,
gred(x) = 0.8 means that there is an 80% probability for the proposition “x is red" to be true.
During training, concept and class predictions (c, y) are aligned with ground-truth labels (ĉ, ŷ). This
architecture and training allows CBNMs to provide explanations for class predictions indicating the
presence or absence of concepts. Another main advantage of these models is that, at test time, human
experts may also intervene on mispredicted concept labels to improve CBNMs’ task performance and
extract counterfactual explanations [4, 11]. However, the task prediction f is still often a black-box
model to guarantee high performances, thus not providing any insight into which concepts are used
and how they are composed to reach the final prediction.

2

https://github.com/daviddebot/CMR

3 Model

In this section, we introduce Concept-based Memory Reasoner (CMR), the first concept-based model
that is globally interpretable, provably verifiable and a universal binary classifier. CMR consists of
three main components: a concept encoder, a rule selector and a task predictor. CMR’s task prediction
process differs significantly from traditional CBMs. It operates transparently by (1) selecting a
logic rule from a set of jointly-learned rules, and (2) symbolically evaluating the chosen rule on the
concept predictions. This unique approach enables CMR not only to provide explanations by tracing
class predictions back to concept activations, but also to explain which concepts are utilized and
how they interact to make a task prediction. Moreover, the set of learned rules remains accessible
throughout the learning process, allowing users to analyse the model’s behaviour and automatically
verify whether some desired properties are being fulfilled at any time. The logical interpretation of
CMR’s task predictor, combined with its provably verifiable behaviour, distinguishes it sharply from
existing CBMs’ task predictors.

3.1 Probabilistic graphical model

In Figure 1, we show the probabilistic graphical model of CMR. There are four variables, three of
which are standard in (discriminative) CBMs: the observed input x ∈ X , the concepts encoding c ∈ C

x c y

r

Figure 1: Probabilistic graphi-
cal model of CMR

and the task prediction y ∈ {0, 1}. CMR adds an additional variable:
the rule r ∈ {P,N, I}nC . A rule is a conjunction in the concept set,
like c1 ∧ ¬c3. A conjunction is uniquely identified when, for each
concept ci, we know whether, in the rule, the concept is irrelevant (I),
positive (P) or negative (N). We call ri ∈ {P,N, I} the role of the i-
th concept in rule r. For example, given the three concepts c1, c2, c3,
the conjunction c1∧¬c3 can be represented as r1 = P, r2 = I, r3 =
N , since the role of c1 is positive (P), the role of c2 is irrelevant (I)
and the role of c3 is negative (N).

This probabilistic graphical model encodes the joint conditional distribution p(y, r, c|x) and factorizes
as

p(y, r, c|x) = p(y|c, r)p(r|x)p(c|x) (1)

and consists of the following components:

• p(c|x) is the concept encoder. For concept bottleneck encoders1, it is simply the product of
nC independent Bernoulli distributions p(ci|x), whose logits are parameterized by some
neural network encoder gi : X → R.

• p(r|x) is the rule selector, described in Section 3.1.1. Given an input x, p(r|x) models the
uncertainty over which conjunctive rule must be used.

• p(y|c, r) is the task predictor, which will be described in Section 3.1.2. Given a rule
r ∼ p(r|x) and an assignment of truth values c ∼ p(c|x) to the concepts, the task predictor
evaluates the rule on the concepts. In all the cases described in this paper, p(y|c, r) is a
degenerate deterministic distribution.

3.1.1 Rule selector

We model the rule selector p(r|x) as a mixture of nR ∈ N rule distributions. The selector "selects"
a rule from a set of rule distributions (i.e. the components of the mixture), and we call this set the
rulebook. The rulebook is jointly learned with the rest of CMR and can be inspected and verified at
every stage of the learning. Architecturally, the selection is akin to an attention mechanism over a
differentiable memory [12].

To this end, let s ∈ [1, nR] ⊂ N be the indicator of the selected component of the mixture, then:

p(r|x) =
∑
s

p(r|s)p(s|x) (2)

1In case of encoders that provide additional embeddings other than concept logits, they are modelled as Dirac
delta distributions, thus not modelling any uncertainty over them.

3

𝑝 𝑐 𝑥 .8 .1 .0

R S T

∼ red=1, square=0, table=0

𝑝 𝑠 𝑥

RULEBOOK

.7

.3
𝑝 𝑟 𝑠

.7 .1 .1

R S T

.2 .8 .0

.1 .1 .9 decoded rule

P

N

I

∼ apple ← red ∧ ¬square

logical eval

𝑝 𝑦 𝑐, 𝑟
apple=1

(A)

(C)

(B)

(D)

(E)

𝑒1
𝑒2

“rule embedding”

= latent repr. of a rule

∼ 𝑒1

concepts

Figure 2: Example prediction of CMR with a rulebook of two rules and three concepts (i.e. red (R),
square (S), table (T)). In this figure, we sample (∼) for clarity, but in practice, we compute every
probability exactly. Every black box is implemented by a neural network, while the white box is a
pure symbolic logic evaluation. (A) The image is mapped to a concept prediction. (B) The image is
mapped by the component selector to a distribution over rules. (C) This distribution is used to select
a rule embedding from the encoded rulebook. (D) The rule embedding is decoded into a logic rule by
assigning to each of the concepts its role in the rule, i.e. whether it is positive (P), negative (N), or
irrelevant (I). Finally, (E) the rule is evaluated on the concept prediction to provide the task prediction
on the task apple .

Here, p(s|x) is the categorical distribution defining the mixing weights of the mixture. It is parame-
terized by a neural network ϕ(s) : X → RnR , outputting one logit for each of the nR components.
Each p(r|s) is a distribution over all possible rules and is modelled as a product of nC categorical
distributions, i.e. p(r|s) =

∏nC

i=1p(ri|s). We assign to each component s = j a rule embedding
ej ∈ Rq, and each categorical ri is then parameterized by a neural network ϕ(r)

i : Rq → R3,
mapping the rule embedding to the logits of the categorical component. Intuitively, for each concept
ci, the corresponding categorical distribution p(ri|s = j) decodes the embedding ej to the three
possible roles ri ∈ {P,N, I} of concept ci in rule r. This way, each embedding in the rulebook
is the latent representation of a logic rule.2 Lastly, we define the set E of all rule embeddings, i.e.
E = {ej}j∈[1,nR], as the encoded rulebook.

3.1.2 Task predictor

The CMR task predictor p(y|r, c) provides the final y prediction given concept predictions c and the
selected rule r. We model the task predictor as a degenerate deterministic distribution, providing the
entire probability mass to the unique value y which corresponds to the logical evaluation of the rule r
on the concept predictions c. In particular, let ri ∈ {P,N, I} be the role of the i-th concept in rule r.
Then, the symbolic task prediction y obtained by evaluating rule r on concept predictions c is:

y ←
nC∧
i=1

(ri = I) ∨ (((ri = P)⇒ ci) ∧ ((ri = N)⇒ ¬ci))) (3)

Here, the y prediction is equivalent to a conjunction of nC different conjuncts, one for each concept.
If a concept i is irrelevant according to the selected rule r (i.e. ri = I), the corresponding conjunct is
ignored. If ri = P , then the conjunct is True if the corresponding concept is True. Otherwise, i.e. if
ri = N , the conjunct is True if the corresponding concept is False.

A graphical representation of the model is shown in Figure 2.

2Actually, each embedding is the latent representation of a distribution over all possible rules, factorized per
concept. However, this distribution is typically quite crisp after training (see also Appendix B). After training,
we convert each distribution into the most likely rule by taking the argmax among the roles of the concepts
(see Section 5). This way, each embedding in the encoded rulebook corresponds with a rule, and the decoded
rulebook is a set of rules.

4

4 Expressivity, interpretability and verification

In this section, we will discuss the proposed model along three different directions: expressivity,
interpretability and verification.

4.1 Expressivity

An interesting property is that CMR is as expressive as a neural network binary classifier.
Theorem 4.1. CMR is a universal binary classifier [13] if nR ≥ 3.

Proof. Recall that the rule selector is implemented by some neural network ϕ(s) : X → RnR .
Consider the following three rules, easily expressible in CMR as showed on the right of each rule:

y ← True (i.e.∀i : ri = I), y ←
nC∧
i=1

ci (i.e. ∀i : ri = P), y ←
nC∧
i=1

¬ci (i.e.∀i : ri = N)

By selecting one of these three rules, the rule selector can always make a desired y prediction,
regardless of the concepts c. In particular, to predict y = 1, the selector can select the first rule. To
predict y = 0 when at least one concept has probability less than 50% in the concept predictions c
(i.e. ∃i : p(ci|x) < 0.50), it can select the second rule. Lastly, to predict y = 0 when all concepts
have probability of at least 50% in c (i.e. ∀i : p(ci|x) ≥ 0.50), it can select the last rule.

Consequently, CMR can in theory always achieve the same accuracy as a neural network without
concept bottleneck, irrespective of which concepts are employed in the model. This distinguishes
CMR sharply from CBNMs.

4.2 Interpretability

CMR’s task prediction is the composition of a (neural) rule selector and the symbolic evaluation of
the selected rule. Therefore, we can always inspect the whole rulebook to know exactly the global
behaviour of the task prediction. In particular, let s be the selected rule, ej the embedding of the
j-th rule, and r(j)i ∈ {P,N, I} the role of the i-th concept in the j-th rule at decision time, i.e.
r(j)i = argmax(ϕ(r)

i (ej)). Then, CMR’s task prediction can be logically defined as the global rule
obtained as the disjunction of all decoded rules, each filtered by whether the rule has been selected or
not. That is:

y ⇔
nR∨
j=1

(s = j) ∧

(
nC∧
i=1

(r
(j)
i = I) ∨ (((r

(j)
i = P)⇒ ci) ∧ ((r

(j)
i = N)⇒ ¬ci))

)
(4)

It is clear that if the model learns the three rules in the proof of Theorem 4.1, the selector simply
becomes a proxy for y. It is safe to say that the interpretability of the selector (and consequently of
CMR) fully depends on the interpretability of the learned rules.

Prototype-based rules. In order to develop interpretable rules, we focus on standard theories in
cognitive science [14] by looking at those rules that are prototypical of the concept activations on
which they are applied to. Prototype-based models are often considered one of the main categories
of interpretable models [9] and have been investigated in the context of concept-based models [15].
However, CMR distinguishes itself from prototype-based models in two significant ways. First, in
prototype-based CBMs, prototypes are built directly in the input space, such as images [16] or on
part of it [17], and are often used to automatically build concepts. However, this approach carries
similar issues w.r.t. traditional input-based explanations, like saliency maps (i.e. a prototype made
by a strange pattern of pixels can still remain unclear to the user). In contrast, in CMR, prototypes
(i.e. rules) are built on top of human-understandable concepts and are therefore interpretable as well.
Second, differently from prototype-based models, CMR assigns a logical interpretation to prototypes
as conjunctive rules. Unlike prototype networks that assign class labels only based on proximity
to a prototype, CMR determines class labels through the symbolic evaluation of prototype rules on
concepts. Therefore, prototypes should be representative of concept activations but also provide
a correct task prediction. This dual role of CMR prototypes adds a constraint: only prototypes of
positive instances (i.e. y = 1) can serve as effective classification rules. Thus, when rules are selected
for negative instances (i.e. y = 0), they do not need to be representative of the concept predictions.

5

Interventions. In contrast to existing CBMs, which only allow prediction-time concept interventions,
the global interpretability of CMR allows humans to intervene also on the rules that will be exploited
for task prediction. These interactions may occur during the training phase to directly shape the
model that is being learned, and may come in various forms. A first approach involves the manual
inclusion of rules into the rulebook, thereby integrating expert knowledge into the model [18]. The
selector mechanism within the model learns to choose among the rules acquired through training
and those manually incorporated. As a result, the rules that are being acquired through training
can change after adding expert rules. A second approach consists of modifying the learned rules
themselves, by altering the role ri of a concept within a rule. For instance, setting the logit of Pi to 0
ensures that ci cannot exhibit a positive role in that rule, and setting the logits of both Pi and Ni to 0
ensures irrelevance. This type of intervention could be exploited to remove (or prevent) biases and
ensure counterfactual fairness [19].

4.3 Verification

One of the main properties of CMR is that, at decision time, it explicitly represents the task prediction
as a set of conjunctive rules. Logically, the mixture semantics of the selector can be interpreted
as a disjunction, leading to a standard semantics in stochastic logic programming [20, 21]. As the
only neural component is in the selection and the concept predictions, task predictions generated
using CMR’s global formula (cf. Section 4.2) can be automatically verified by using standard tools of
formal verification (e.g. model checking), no matter which rule will be selected. Being able to verify
properties prior to deployment of the model strongly sets CMR apart from existing models, where
verification tasks can only be applied at prediction time. In particular, given any propositional logical
formula α over the propositional language {c1, c2, ..., cnC

, y}, α can be automatically verified to
logically follow from Equation 4. This formula can be converted into a propositional one by (1) evalu-
ating the role expressions (i.e. rji = · becomes True or False), (2) replacing the selection expressions
with a new propositional variable per rule (i.e. (s = j) becomes sj), and (3) adding mutual exclusivity
constraints for the different sj . For example, for nC = nR = 2, r11 = P, r12 = I, r21 = P, r22 = N ,
we get:

(s1 ⊕ s2) ∧ (y ⇔ (s1 ∧ c1) ∨ (s2 ∧ c1 ∧ ¬c2)) (5)
with ⊕ the xor connective. In logical terms, if the formula α is entailed by such a formula, it means
that α must be true every time Equation 4 is used for prediction.

5 Learning and inference

5.1 Learning problem

Learning in CMR follows the standard objective in CBM literature, where the likelihood of the
concepts and task observations in the data is maximized. Formally, let Ω be the set of parameters of
the probability distributions, such that CMR’s probabilistic graphical model is globally parameterized
by Ω, i.e. p(y, r, c|x; Ω). Let D = {(x̂, ĉ, ŷ)} be a concept-based dataset of i.i.d. triples (input,
concepts, task). Then, learning is the optimization problem:

max
Ω

∑
(x̂,ĉ,ŷ)∈D

log p(ŷ, ĉ|x̂; Ω) (6)

Due to the factorization of the mixture model in the rule selection, CMR has a tractable likelihood
computation. In particular, the following result holds.
Theorem 5.1 (Log-likelihood). The maximum likelihood simplifies to the following O(nC · nR)
objective:

max
Ω

∑
(x̂,ĉ,ŷ)∈D

(
nC∑
i=1

log p(ci = ĉi|x̂)

)
+

(
log

nR∑
ŝ=1

p(s = ŝ|x̂) p(y = ŷ|ĉ, ŝ)

)
(7)

with:

p(y = 1|c, s) =
nC∏
i=1

(p(Ii|s) + p(Pi|s)1[ci = 1] + p(Ni|s)1[ci = 0])

where 1[·] is an indicator function of the condition within brackets.

6

Proof. See Appendix A

The maximum likelihood approach only focuses on the prediction accuracy of the model. However,
as discussed in Section 4.2, we look for the set of learned rules r to represent prototypes of concept
predictions, as in prototype-based learning [15]. To drive the learning of representative positive
prototypes when we observe a positive value for the task, i.e. when y = 1, we add a regularization
term to the objective. Intuitively, every time a rule is selected for a given input instance x with task
label y = 1, we want the rule to be as close as possible to the observed concept prediction. At the
same time, since the number of rules is limited and the possible concept activations are combinatorial,
the same rule is expected to be selected for different concept activations. When this happens, we
will favour rules that assign an irrelevant role to the inconsistent concepts in the activations. The
regularized objective is:

max
Ω

∑
(x̂,ĉ,ŷ)∈D

(
nC∑
i=1

log p(ci = ĉi|x̂)

)
+

log

nR∑
ŝ=1

p(s = ŝ|x̂) p(y = ŷ|ĉ, ŝ) preg(r = ĉ|ŝ)ŷ︸ ︷︷ ︸
Regularization Term

 (8)

and:

preg(r = ĉ|s) =
nC∏
i=1

(0.5 p(ri = I|s) + p(ri = P |s)1[ĉi = 1] + p(ri = N |s)1[ĉi = 0])

This term favours the selected rule r to reconstruct the observed ĉ as much as possible. When such
reconstruction is not feasible due to the limited capacity of the rulebook, the term will favour irrelevant
roles for concepts. In this way, we will develop rules that have relevant terms (i.e. ri ∈ {P,N}) only
if they are representative of all the instances in which the rule is selected. Appendix B contains an
investigation of the influence of this regularization on the optima of the loss.

5.2 Inference

After training, we replace each role distribution p(ri|s = j) for each concept i and rule embedding j
with the most likely role. This ensures that each embedding corresponds to a single logic rule rather
than a distribution over all possible rules. Moreover, at decision-time, the concepts are unobserved,
leading to the following likelihood computation:

p(y = 1|x) =
nR∑
ŝ=1

p(s = ŝ|x)
nC∏
i=1

(1[ri = I] + 1[ri = P] p(ci|x) + 1[ri = N] p(¬ci|x)) (9)

with ri = argmaxr̂i∈{P,N,I}p(ri = r̂i|s = ŝ).

6 Experiments

Our experiments aim to answer the following research questions:

(1) Generalization: Does CMR attain similar task and concept accuracy as existing CBMs and
black boxes? Does CMR generalize well when the concept set is incomplete3?

(2) Explainability and Intervenability: Can CMR recover ground truth rules? Can CMR learn
meaningful rules when the concept set is incomplete? Are concept interventions and rule
interventions effective in CMR?

(3) Verifiability: Can CMR allow for post-training verification regarding its behaviour?

6.1 Experimental setting

This section describes essential information about experiments. We provide further details in Ap-
pendix C.

3Incomplete concept sets do not contain all the information present in the input that is useful for task
prediction. Models with a concept bottleneck cannot achieve black-box accuracy with them.

7

Table 1: Task accuracy on all datasets. The best and second best for CBMs are shown in bold (black
and purple, respectively).

MNIST+ MNIST+∗ C-MNIST CELEBA CUB CEBAB

CBM+linear 0.00±0.00 0.00±0.00 99.07±0.31 49.02±0.20 50.60±0.69 45.15±29.93

CBM+MLP 97.41±0.55 72.51±2.42 99.42±0.11 50.29±0.60 55.83±0.33 83.70±0.30

CBM+DT 96.73±0.39 77.63±0.44 99.44±0.03 49.60±0.20 51.83±0.48 83.15±0.15

CBM+XG 96.73±0.39 76.54±0.54 99.44±0.03 50.39±0.24 62.97±0.96 83.80±0.01

CEM 92.44±0.26 92.94±1.15 99.32±0.11 65.44±0.25 57.03±0.80 83.30±1.59

DCR 90.70±1.21 92.24±1.37 98.99±0.08 35.65±1.53 50.00±0.00 67.30±0.93

Black box 83.26±8.71 83.26±8.71 99.19±0.11 65.33±0.60 64.07±0.33 88.67±0.19

CMR (ours) 97.25±0.24 94.65±1.99 99.12±0.04 63.17±1.13 60.07±1.70 85.14±0.43

Data & task setup. We base our experiments on four different datasets commonly used to evaluate
CBMs: MNIST+ [22], where the task is to predict the sum of two digits; C-MNIST, where we
adapted MNIST to the task of predicting whether a coloured digit is even or odd; MNIST+∗, where
we removed the concepts for the digits 0 and 1 from the concept set; CelebA [23], a large-scale
face attributes dataset with more than 200K celebrity images, each with 40 concept annotations4;
CUB [24], where the task is to predict bird species based on bird characteristics; and CEBaB [25], a
text-based task where reviews are classified as positive or negative based on different criteria (e.g.
food, ambience, service, etc). These datasets range across different concept set quality, i.e. complete
(MNIST+, C-MNIST, CUB) vs incomplete (CelebA, MNIST+∗), and different complexities of the
concept prediction task, i.e. easy (MNIST+, MNIST+∗, C-MNIST), medium (CEBaB) and hard
(CelebA, CUB). All the datasets come with full concept annotations.

Evaluation. To measure classification performance on tasks and concepts, we compute subset
accuracy and regular accuracy, respectively. For CUB, we instead compute the Area Under the
Receiver Operating Characteristic Curve [26] for the tasks due to the large class imbalance. All
metrics are reported using the mean and the standard error of the mean over three different runs with
different initializations.

Baselines. In our experiments, we compare CMR with existing CBM architectures. We consider
Concept Bottleneck Models with different task predictors: linear, multi-layer (MLP), decision-tree
(DT) and XGBoost (XG). Moreover, we add two state-of-the-art CBMs: Concept Embedding Models
(CEM) [27] and Deep Concept Reasoner (DCR) [11]. We employ hard concepts in CMR and our
competitors, avoiding the problem of input distribution leakage that can affect task accuracy [28, 29]
(see Appendix C for additional details). Finally, we include a deep neural network without concepts
to measure the effect of an interpretable architecture on generalization performance.

We provide an additional experiment serving as an ablation study on CMR’s joint rule learning in
Appendix C.3.3.

6.2 Key findings & results

6.2.1 Generalization

CMR’s high degree of interpretability does not harm accuracy, which is similar to or better
than competitors’. In Table 1, we compare CMR with its competitors regarding task accuracy. On
all data sets, CMR achieves an accuracy close to black-box accuracy, either beating its concept-based
competitors or obtaining similar results. In Table 5 of Appendix C, we show that CMR’s training does
not harm concept accuracy, which is similar to its competitors. Moreover, we provide an experiment
showing that CMR’s accuracy is robust to the chosen number of rules in Appendix C.3.4.

CMR obtains accuracy competitive with black boxes even on incomplete concept sets. We
evaluate the performance of CMR on settings with increasingly more incomplete concept sets. Firstly,
as shown in Table 1, in MNIST+∗, CMR still obtains task accuracy close to the complete setting,
beating its competitors which suffer from a concept bottleneck. Secondly, we run an experiment on

4We remove the concepts Wavy_Hair , Black_Hair and Male from the concept set and instead use them
as tasks.

8

CelebA where we gradually decrease the number of concepts in the concept set. Figure 3 shows the
achieved task accuracies for CMR and the competitors. CMR’s accuracy remains high no matter the
size of the concept set, while the performance of the competitors with a bottleneck (i.e. all except
CEM) strongly degrades.

6.2.2 Explanations and intervention

CMR discovers ground truth rules. We quantitatively evaluate the correctness of the rules CMR
learns on MNIST+ and C-MNIST. In the former, the ground truth rules have no irrelevant concepts;
in the latter, they do. In all runs of these experiments, CMR finds all correct ground truth rules. In
C-MNIST, CMR correctly learns that the concepts related to colour are irrelevant for classifying the
digit as even or odd (see Table 2).

CMR discovers meaningful rules in the absence of ground truth. While the other datasets do
not provide ground truth rules, a qualitative inspection shows that they are still meaningful. Table 2
shows two examples for CEBaB, and additional rules can be found in Appendix C.

Table 2: Selection of learned rules. For brevity in C-
MNIST, negated concepts are not shown and irrelevant
concepts are shown between parentheses. We abbreviate
good to g, bad to b and unknown to u.

C-MNIST
yeven ← 0 ∧ (red) ∧ (green)
yeven ← 2 ∧ (red) ∧ (green)
yodd ← 3 ∧ (red) ∧ (green)

CEBaB
yneg ← ¬foodg ∧ ¬ambg ∧ ¬noiseg
ypos ← ¬foodb ∧ ¬ambb ∧ noiseu ∧
¬noiseb ∧ ¬noiseg

1 12 24 37
Number of Concepts

0.3

0.4

0.5

0.6

Ta
sk

 T
es

t A
cc

ur
ac

y

Black box
CBM+DT
CBM+MLP
CBM+XG
CEM
CMR

Figure 3: Task accuracy on CelebA with
varying numbers of employed concepts.

Rule interventions during training allow human experts to improve the learned rules. We
show this by choosing a rulebook size for MNIST+ that is too small to learn all ground truth rules.
Consequently, CMR learns rules that differ from the ground truth rules. After manually adding rules
to the pool in the middle of training, CMR (1) learns to select these new rules for training examples for
which they make a correct task prediction, and (2) improves its previously learned rules by eventually
converging to the ground truth rules. This is the case for all runs. Table 3 gives some examples of
how manually adding rules affects the learned rules. In Appendix C.3.3, we provide an additional
experiment with rule interventions, where we add rules extracted from a rule learner. Additionally, as
concept interventions are considered a core advantage of CBMs, we show in Appendix C that CMR
is equally responsive as competitors, consistently improving its accuracy after concept interventions.

Table 3: Selection of rule interventions and their effect on learned rules. For brevity, negated concepts
are not shown, and irrelevant concepts are shown between parentheses.

Learned rule before intervention Added rule Learned rule after intervention

y8 ← (c0,3) ∧ (c1,5) ∧ (c0,4) ∧ (c1,4) y8 ← c0,3 ∧ c1,5 y8 ← c0,4 ∧ c1,4
y9 ← (c0,8) ∧ (c1,1) ∧ (c0,1) ∧ (c1,8) y9 ← c0,8 ∧ c1,1 y9 ← c0,1 ∧ c1,8
y9 ← (c0,0) ∧ (c1,9) ∧ (c0,2) ∧ (c1,7) y9 ← c0,0 ∧ c1,9 y9 ← c0,2 ∧ c1,7

6.3 Verification

CMR allows verification of desired global properties. In this task, we automatically verify
semantic consistency properties for MNIST+ and CelebA whether CMR’s task prediction satisfies
some properties of interest. For verification, we exploited a naive model checker that verifies whether
the property holds for all concept assignments where the theory holds. When this is not feasible,
state-of-the-art model formal verification tools can be exploited, as both the task prediction and the
property are simply two propositional formulas. For MNIST+, we can verify that, for each task
y, CMR never uses more than one positive concept (i.e. digit) per image. This can be done by

9

verifying one formula per concept j of digit k: ∀y, i ̸= j : y ∧ ck,j ⇒ ¬ck,i. This is also easily
verifiable by simply inspecting the rules in Appendix C. Moreover, in CelebA, we can easily verify
that Bald ⇒ ¬Wavy_Hair with the learned rulebook for nC = 12 (see Table 10 in Appendix C), as
¬Bald is a conjunct in each rule that does not trivially evaluate to False.

7 Related works

In recent years, XAI techniques have been criticized for their vulnerability to data modifications
[30, 31], insensitivity to reparametrizations, [32], and lacking meaningful interpretations for non-
expert users [33]. To address these issues, Concept-based methods [34, 35, 5, 10] have emerged,
offering explanations in terms of human-interpretable features, a.k.a. concepts. Concept Bottleneck
Models [4] go a step further by directly integrating these concepts as explicit intermediate network
representations. Concept Embeddings Models (CEMs) [7, 8, 11] close the accuracy gap with black-
box models through vectorial concept representations. However, they still harm the interpretability, as
it is unclear what information is contained in the embeddings. In contrast, CMR closes the accuracy
gap by using a neural rule selector coupled with learned symbolic logic rules. As a result, CMR’s task
prediction is transparent, allowing experts to see how concepts are being used for task prediction, and
allowing intervention and automatic verification of desired properties. To the best of our knowledge,
there is only one other attempt at analysing CBMs’ task prediction in terms of logical formulae,
namely DCR [11]. For a given example, DCR predicts and subsequently evaluates a (fuzzy) logic
rule. As rules are predicted on a per-example basis, the global behaviour of DCR cannot be inspected,
rendering interaction (e.g. adding expert rules) and verification impossible. In contrast, CMR learns
(probabilistic) logic rules in a memory, allowing for inspection, interaction and verification.

The use of logic rules by CMR for interpretability purposes aligns it closely with the field of
neurosymbolic AI [36, 37]. Here, logic rules [38, 39, 18] or logic programs [40, 22, 21] are used
in combination with neural networks through the use of neural predicates [22]. Concepts in CMR
are akin to a propositional version of neural predicates. However, in CMR, the set of rules is
learned instead of given by the human and direct concept supervision is used for human alignment.
While neurosymbolic rule learning methods have been developed, many are constrained by specific
assumptions about the nature of the task, limiting their usability to particular datasets or environments
(e.g. requiring multitask scenarios [41] or specific datasets like MNIST [42]). Additionally, some
approaches, unlike ours, explore the rule space in a discrete manner [43], which is computationally
expensive. Furthermore, they do not provide expressivity results, while we show that CMR is a
universal binary classifier.

Finally, the relationships with prototype-based models have already been discussed in Section 4.2.

8 Conclusion

We propose CMR, a novel Concept-Based Model that offers a human-understandable and provably-
verifiable task prediction process. CMR integrates a neural selection mechanism over a memory of
learnable logic rules, followed by a symbolic evaluation of the selected rule. This approach enables
global interpretability and verification of task prediction properties. Our results show that (1) CMR
achieves near-black-box accuracy, (2) discovers meaningful rules, and (3) facilitates strong interaction
with human experts through rule interventions. The development of CMR can have significant societal
impact by enhancing transparency, verifiability, and human-AI interaction, thereby fostering trust and
reliability in critical decision-making processes.

Limitations and future works. CMRs are still fundamental models and several limitations need
to be explored further in future works. In particular, CMRs focus on positive-only explanations,
while negative-reasoning explanations have not been explored yet. Moreover, the same selection
mechanism can be tested in non-logic, globally interpretable settings (like linear models). Finally, the
verification capabilities of CMR will be tested on more realistic, safety critical domains, where the
model can be verified against safety specifications.

10

Acknowledgments and Disclosure of Funding

DD is a fellow of the Research Foundation-Flanders (FWO-Vlaanderen, 1185125N). This research has
also received funding from the KU Leuven Research Fund (STG/22/021, CELSA/24/008) and from
the Flemish Government under the "Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen"
programme. FG has been supported by the Partnership Extended PE00000013 - “FAIR - Future
Artificial Intelligence Research” - Spoke 1 “Human-centered AI”. PB acknowledges support from
SNSF project TRUST-ME (No. 205121L_214991). MD was supported by TAILOR and by HumanE-
AI-Net projects funded by EU Horizon 2020 research and innovation programme under GA No
952215 and No 952026, respectively. This study has received funding from the European Union’s EU
Framework Program for Research and Innovation Horizon under the Grant Agreement No 101073307
(MSCA-DN LeMuR).

References
[1] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and

Dino Pedreschi. A survey of methods for explaining black box models. ACM computing surveys
(CSUR), 51(5):1–42, 2018.

[2] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access, 6:52138–52160, 2018.

[3] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Ben-
jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and
challenges toward responsible ai. Information fusion, 58:82–115, 2020.

[4] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In International conference on machine learning,
pages 5338–5348. PMLR, 2020.

[5] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. Advances in neural information processing systems, 31, 2018.

[6] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772–782, 2020.

[7] Mateo Espinosa Zarlenga, Pietro Barbiero, Zohreh Shams, Dmitry Kazhdan, Umang Bhatt,
Adrian Weller, and Mateja Jamnik. Towards robust metrics for concept representation evaluation.
arXiv preprint arXiv:2301.10367, 2023.

[8] Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept
bottleneck models. arXiv preprint arXiv:2306.01574, 2023.

[9] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

[10] Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-
based explainable artificial intelligence: A survey. arXiv preprint arXiv:2312.12936, 2023.

[11] Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Char-
lotte Magister, Alberto Tonda, Pietro Lio’, Frederic Precioso, Mateja Jamnik, and Giuseppe
Marra. Interpretable neural-symbolic concept reasoning. In ICML, 2023.

[12] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[14] Eleanor Rosch. Principles of categorization. In Cognition and categorization, pages 27–48.
Routledge, 1978.

11

[15] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable machine learning: Fundamental principles and 10 grand challenges. Statistic
Surveys, 16:1–85, 2022.

[16] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[17] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.
This looks like that: deep learning for interpretable image recognition. Advances in neural
information processing systems, 32, 2019.

[18] Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for
learning and inference. Artificial Intelligence, 244:143–165, 2017.

[19] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness.
Advances in neural information processing systems, 30, 2017.

[20] James Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44:
245–271, 2001.

[21] Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural
stochastic logic programming. Proceedings of the AAAI Conference on Artificial Intelligence,
36(9):10090–10100, Jun. 2022. doi: 10.1609/aaai.v36i9.21248. URL https://ojs.aaai.
org/index.php/AAAI/article/view/21248.

[22] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. DeepProbLog: Neural Probabilistic Logic Programming. In NeurIPS, pages 3753–3763,
2018.

[23] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In ICCV, 2015.

[24] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Be-
longie, and Pietro Perona. Caltech-ucsd birds 200. Technical Report CNS-TR-201, Cal-
tech, 2010. URL /se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf,
http://www.vision.caltech.edu/visipedia/CUB-200.html.

[25] Eldar D Abraham, Karel D’Oosterlinck, Amir Feder, Yair Gat, Atticus Geiger, Christopher
Potts, Roi Reichart, and Zhengxuan Wu. Cebab: Estimating the causal effects of real-world
concepts on nlp model behavior. Advances in Neural Information Processing Systems, 35:
17582–17596, 2022.

[26] David J. Hand and Robert J. Till. A simple generalisation of the area under the roc curve for
multiple class classification problems. Mach. Learn., 45(2):171–186, oct 2001. ISSN 0885-6125.
doi: 10.1023/A:1010920819831. URL https://doi.org/10.1023/A:1010920819831.

[27] Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco
Giannini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian
Weller, Pietro Lio, and Mateja Jamnik. Concept embedding models: Beyond the accuracy-
explainability trade-off. Advances in Neural Information Processing Systems, 35, 2022.

[28] Emanuele Marconato, Andrea Passerini, and Stefano Teso. Glancenets: Interpretable, leak-proof
concept-based models. Advances in Neural Information Processing Systems, 35:21212–21227,
2022.

[29] Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept
bottleneck models. Advances in Neural Information Processing Systems, 35:23386–23397,
2022.

[30] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency methods. Explainable
AI: Interpreting, explaining and visualizing deep learning, pages 267–280, 2019.

12

https://ojs.aaai.org/index.php/AAAI/article/view/21248
https://ojs.aaai.org/index.php/AAAI/article/view/21248
/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf, http://www.vision.caltech.edu/visipedia/CUB-200.html
/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf, http://www.vision.caltech.edu/visipedia/CUB-200.html
https://doi.org/10.1023/A:1010920819831

[31] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 3681–3688,
2019.

[32] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018.

[33] Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wortman Wort-
man Vaughan, and Hanna Wallach. Manipulating and measuring model interpretability. In
Proceedings of the 2021 CHI conference on human factors in computing systems, pages 1–52,
2021.

[34] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pages 2668–2677. PMLR, 2018.

[35] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-
based explanations. Advances in neural information processing systems, 32, 2019.

[36] Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Luis C Lamb, Leo de Penning,
BV Illuminoo, Hoifung Poon, and COPPE Gerson Zaverucha. Neural-symbolic learning and
reasoning: A survey and interpretation. Neuro-Symbolic Artificial Intelligence: The State of the
Art, 342(1):327, 2022.

[37] Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statistical
relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, page 104062,
2024.

[38] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function
for deep learning with symbolic knowledge. In International conference on machine learning,
pages 5502–5511. PMLR, 2018.

[39] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

[40] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert, and Ondrej Kuzelka.
Lifted relational neural networks: Efficient learning of latent relational structures. Journal of
Artificial Intelligence Research, 62:69–100, 2018.

[41] Hao Tang and Kevin Ellis. From perception to programs: regularize, overparameterize, and
amortize. In International Conference on Machine Learning, pages 33616–33631. PMLR,
2023.

[42] Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini. Deep symbolic
learning: Discovering symbols and rules from perceptions. arXiv preprint arXiv:2208.11561,
2022.

[43] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal
of Artificial Intelligence Research, 61:1–64, 2018.

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

13

[47] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[49] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in
python, 2018.

[50] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9
(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A Maximum likelihood derivation

We show that the maximum likelihood problem in Equation 6 simplifies to:

log p(ŷ, ĉ|x̂) =

(
nC∑
i=1

log p(ci = ĉi|x̂)

)
+

(
log

nR∑
ŝ=1

p(s = ŝ|x̂) p(y = ŷ|ĉ, ŝ)

)
with:

p(y|c, s) =
nC∏
i=1

(p(Ii|s) + p(Pi|s)1[ci = 1] + p(Ni|s)1[ci = 0])

Proof. Let n := nC . First, we express the likelihood as the marginalization of the distribution over
the unobserved variables

p(y, c|x) = p(c|x)
∑
s

p(s|x)
∑
r1

...
∑
rn

p(r1, ..., rn|s)p(y|r1, ..., rn, c1, ..., cn)

Due to the independence of the individual components of the rule distribution:

p(r1, ..., rn|s) =
n∏

i=1

p(ri|s)

The logical evaluation of a rule can be expressed in terms of indicator functions over the different
variables involved.

p(y|r1, ..., rn, c1, ..., cn) =
n∏

i=1

1[ri = I] + 1[ri = P]1[ci = 1] + 1[ri = n]1[ci = 0]

Let us define f(ri, ci) := 1[ri = I] + 1[ri = P]1[ci = 1] + 1[ri = n]1[ci = 0].

Then, the likelihood becomes:

p(y, c|x) = p(c|x)
∑
s

p(s|x)
∑
r1

...
∑
rn

n∏
i=1

p(ri|s) f(ri, ci)

= p(c|x)
∑
s

p(s|x)

(∑
r1

p(r1|s) f(r1, c1)

)
(...)

(∑
rn

p(rn|s) f(rn, cn)

)

= p(c|x)
∑
s

p(s|x)
n∏

i=1

∑
ri

p(ri|s) f(ri, ci)

= p(c|x)
∑
s

p(s|x)
n∏

i=1

(p(Ii|s) f(Ii, ci) + p(Pi|s) f(Pi, ci) + p(Ni|s) f(Ni, ci))

= p(c|x)
∑
s

p(s|x)
n∏

i=1

(p(Ii|s) + p(Pi|s)1[ci = 1] + p(Ni|s)1[ci = 0])

= p(c|x)
∑
s

p(s|x) p(y|c, s)

Using p(c|x) =
∏nC

i=1 p(ci|x), and applying the logarithm, we find:

log p(y, c|x) =

(
nC∑
i=1

log p(ci|x)

)
+

(
log

nR∑
s=1

p(s|x) p(y|c, s)

)

15

(a) p(y|c) (b) p(y|¬c) (c) p(y|c) ∗ p(y|¬c)

(d) preg(r) (e) preg(¬r) (f) preg(r) ∗ preg(¬r)

(g) p(y|c) ∗ preg(r) (h) p(y|¬c) ∗ preg(¬r) (i) p(y|c) ∗ preg(r) ∗ p(y|¬c) ∗
preg(¬r)

Figure 4: Likelihoods to be maximized when y = 1 w.r.t. the role r of a single concept in a selected
rule, for different situations. As P +N + I = 1, irrelevance is the coordinate (0, 0). Likelihoods that
cannot be achieved (i.e. when P +N > 1) are put to 0. In the first column, the concept label is 1. In
the second column, it is 0. In the third column, two examples with opposite labels select the rule.

B Implementation and optimization details

Selector re-initialization To promote exploration, we re-initialize the parameters of p(s|x) multiple
times during training, making it easier to escape local optima. The re-initialization frequency is a
hyperparameter that differs between experiments, see Appendix C.

Effect of the regularization term Figure 4 shows the probabilities to be maximized when the
label y = 1, for a selected rule and a single concept, with respect to different roles r for that concept.
Figures 4a, 4b and 4c show the probabilities to be maximized without the regularization. Figures 4d,
4e and 4f show the regularization probabilities (remember, we only have these if y = 1). Figures
4g, 4h and 4i show the probabilities when both are present. As mentioned in the main text, when
c is True for all examples that select the rule, we want that concept’s role to be P . However, when
optimizing without regularization, it is clear that e.g. I is also an optimum (Figure 4a). Because the
regularization only has an optimum in P (Figure 4d), adding the regularization results in the correct
optimum (Figure 4g). A similar reasoning applies when c is False for all examples that select the rule;
consider Figures 4b, 4e and 4h. It should be noted that the regularization alone is insufficient to get
the correct optima; indeed, when examples with different c select the rule, the regularization term has
many optima (Figure 4f), of which only I is desired (as explained in the main text). As the original
loss only has an optimum in I in this case (Figure 4c), the only optimum that remains is the correct
one (Figure 4i). In summary: the loss function we use has the desired optima (last row in Figure 4),
dropping the regularization (first row in Figure 4) or only keeping the regularization (middle row in
Figure 4) both have cases where the optima are undesired.

16

Passing predicted concepts While probabilistic semantics require passing the ground truth c to
the task predictor during training (as these are observed variables), CBMs typically instead pass the
concept predictions (opposite of teacher forcing) to make the model more robust to its own errors. For
this reason, we also employ this technique in CMR in the experiments with CEBaB, CUB and CelebA.
For competitors, we always employ this technique. However, we pass hard concept predictions in
both CMR and the competitors, as to avoid leakage (see Appendix C).

Weight in the loss We introduce a weight β in the regularized objective of Equation 8 (see below).
This adjustment helps to balance the regularization and the task loss. For instance, if the regularization
dominates, CMR might learn rules that can only be used to predict y = 1 in practice. Additionally, a
larger β might assist in settings where achieving high accuracy is difficult for some concepts; in such
cases, concepts with lower accuracy can be more easily considered irrelevant by choosing a larger
β, as they are unable to reliably contribute to correct task prediction. The updated objective is as
follows:

max
Ω

∑
(x̂,ĉ,ŷ)∈D

(
nC∑
i=1

log p(ci = ĉi|x̂)

)
+

log

nR∑
ŝ=1

p(s = ŝ|x̂) p(y = ŷ|ĉ, ŝ)β preg(r = ĉ|s)ŷ︸ ︷︷ ︸
Regularization Term

(10)

C Experiments

C.1 Datasets

MNIST+ This dataset [22] consists of pairs of images, where each image is an MNIST image of a
digit and the task is the sum of the two digits. For these tasks, all concepts are relevant. There is a
total of 30,000 training examples and 5,000 test examples.

MNIST+∗ We create this dataset as MNIST+ except that the concepts for digits 0 and 1 are removed
from the concept set. This makes the concept set incomplete.

C-MNIST We derive this dataset from MNIST [44], taking the MNIST training (60,000 examples)
and test set (10,000 examples), randomly colouring each digit either red or green, and adding these
two colours as concepts. There are two tasks: The first is whether the digit is even, and the second is
whether it is odd. For these tasks, the concepts related to colour are irrelevant.

CelebA This is a large-scale face attributes dataset with more than 200K celebrity images [23].
Each image has 40 concept annotations. As tasks, we take the concepts Wavy_Hair, Black_Hair,
and Male, removing them from the concept set.

CUB In this dataset, the task is to predict bird species from images, where the concepts are 112 bird
characteristics such as tail colour, wing pattern, etc [24]. CUB originally consists of 200 tasks, of
which we take the first 10. Some concepts are strongly imbalanced (some are True in only ±0.5% of
examples, others in 40%, etc.) and there is a large task imbalance (each task is True in only ±0.5%
of examples).

CEBaB This is a text-based dataset that consists of reviews, where the task is to classify them as
positive or negative [25]. There are 12 concepts (food, ambience, service, noise, each either unknown,
bad or good) and 2 tasks (positive or negative review).

C.2 Training

Reproducibility We seed all experiments using seeds 1, 2 and 3.

Soft vs hard concepts When departing from pure probabilistic semantics, CBMs allow not only
the use of concepts as binary variables, but they allow for concepts to be passed to the task predictor
together with their prediction scores, which is called employing soft concepts (vs hard concepts).
While some CBMs use soft concepts as this results in higher task accuracy, the downside of this

17

is that the use of soft concepts also comes with the introduction of input distribution leakage: The
concept probabilities can encode much more information than what is related to the concepts, severely
harming the interpretability of the model [28, 29]. For this reason, in our experiments, all models use
hard concepts, which is realized by thresholding the soft concept predictions at 50%.

Model input For MNIST+, MNIST+∗ and C-MNIST, we train directly on the images. For CelebA
and CUB, instead of training on the images, we train the models on pretrained ResNet18 embeddings
[45]. Specifically, using the torchvision library, we first resize the images to width and height 224
(using bi-linear interpolation), then normalize them per channel with means (0.485, 0.456, 0.406)
and standard-deviations (0.229, 0.224, 0.225) (for CelebA only). Finally, we remove the last (clas-
sification) layer from the pretrained ResNet18 model, use the resulting model on each image, and
flatten the output, resulting in an embedding. For CEBaB, we use a pretrained BERT model [46] to
transform the input into embeddings. Specifically, using the transformers library [47], we create a
BERT model for sequence classification from the pretrained model ’bert-base-uncased’ with 13 labels
(1 per concept and 1 representing both tasks). Then, we fine-tune this model for 10 epochs with batch
size 2, 500 warm-up steps, weight decay 0.01 and 8 gradient accumulation steps. After training, we
use this model to transform each example into an embedding by outputting the last hidden states for
that example.

General training information In all experiments, we use the AdamW optimizer. All neural
competitors are optimized to maximize the log-likelihood of the data with a weight on the likelihood
of the task (1 if not explicitly mentioned below). After training, for each neural model in CelebA,
CEBaB, MNIST+ and MNIST+∗, we restored the weights that resulted in the lowest validation loss.
In CUB, C-MNIST and the MNIST+ rule intervention experiment, we do not use a validation set,
instead restoring the weights that resulted in the lowest training loss. In CelebA, we use a validation
split of 8:2, a learning rate of 0.001, a batch size of 1000, and we train for 100 epochs. In CEBaB,
we use a validation split of 8:2, a learning rate of 0.001, a batch size of 128, and we train for 100
epochs. In CUB, we use a learning rate of 0.001, a batch size of 1280, and we train for 300 epochs.
In MNIST+ and MNIST+∗, we use a validation split of 9:1. We use a learning rate of 0.0001, a batch
size of 512, and we train for 300 epochs. In C-MNIST, we also use a learning rate of 0.0001, a batch
size of 512, and we train for 300 epochs.

General architecture details In CMR, we use two hidden layers with ReLU activation to transform
the input into a different embedding. We use 3 hidden layers with ReLU activation and an output
layer with Sigmoid activation to transform that embedding into concept predictions. The component
p(s|x) takes as input that embedding and is implemented by a single hidden layer with ReLU
activation and an output layer outputting ntasks ∗ nR logits, which are reshaped to (ntasks, nR) and
to which a Softmax is applied over the rule dimension. The rulebook is implemented as an embedding
module of shape (ntasks ∗ nR, rule emb size) that is reshaped to (ntasks, nR, rule emb size). The
rule decoder is implemented by a single hidden layer with ReLU activation and an output layer
outputting 3 ∗ nconcepts logits, which are reshaped to (nconcepts, 3), after which a Softmax is applied
to the last dimension; the result corresponds to p(r|s). At test time, we make p(r|s) deterministic by
setting the probability for the most likely role for each concept to 1 and the others to 0 (effectively
collapsing each rule distribution to the most likely rule for that distribution). Then, exactly one rule
corresponds with each s.

The deep neural network is a feed-forward neural network consisting of some hidden layers with
ReLU activation and an output layer with Sigmoid activation.

Both CBM+linear and CBM+MLP have a concept predictor that is a feed-forward neural net-
work using ReLU activation for the 3 hidden layers and a Sigmoid activation for the output layer.
For CBM+linear, the task predictor is a single linear layer per task with Sigmoid activation. For
CBM+MLP, this is a feed-forward neural network using ReLU activation for the 3 hidden layers, and
a Sigmoid activation for the output layer.

For CEM, we use 4 layers with ReLU activation followed by a Concept Embedding Module where
the concept embeddings have a size of 30. The task predictor is a feed-forward neural network using
ReLU activation for the 3 hidden layers and a sigmoid activation for the output layer.

For DCR, we also use 4 layers with ReLU activation to transform the input into an embedding. Then,
one layer with ReLU activation and one with Sigmoid activation are used to transform the embedding

18

into concept predictions. The embedding and the concepts are fed to the task predictor, which is a
Concept Reasoning Layer using the product-t norm and a temperature of 10.

For CBM+DT and CBM+XGboost, we train a CBM+MLP and use its concept predictions as training
input to the trees.

In the MNIST+ and MNIST+∗ experiments, as mentioned earlier, we use as input the two images
instead of embeddings. Therefore, in all models, we use a CNN (trained jointly with the rest of the
model) to transform the images into an embedding. This CNN consists of a Conv2d layer with 6
output channels and kernel size 5, a MaxPool2d layer with kernel size and stride 2, ReLU activation,
a Conv2d layer with 16 output channels and kernel size 5, another MaxPool2d layer with kernel size
and stride 2, and another ReLU activation. The result is flattened, and a linear layer is used to output
an embedding per image (with size the same as the number of units in the hidden layers of the rest
of the models). This results in 2 embeddings (one per image), which are combined using 10 linear
layers, each with ReLU activation (except the last one) and again the same number of units (except
the first layer, which has 2*number of units). Additionally, the CNN can output concept predictions
by applying 3 linear layers with ReLU activation and a linear layer with a Softmax to each image
embedding. This results in 10 concept predictions per image, which are concatenated. The final
output of the CNN is the tuple of concept predictions and embedding.

In the C-MNIST experiments, the input is a single image. We use a similar CNN architecture as for
MNIST+ but with two differences. Firstly, the activation before the concept prediction is a Softmax
on only the first 10 concepts (related to the digits), while the activation on the last 2 concepts is
Sigmoid. Secondly, after the flattening operation, we use 3 linear layers with ReLU activation and 1
linear layer without activation to transform the embedding into a different one.

Hyperparameters per experiment We use number of hidden units and embedding size inter-
changeably. In CelebA, we always use 500 units in each hidden layer, except for CBM+linear and
CMR where we use 100 units instead. For the deep neural network, we use 10 hidden layers. CMR
uses a rule embedding size of 100, at most 5 rules per task, a β of 30, and we reset the selector every
35 epochs. The trained CBM+MLP for CBM+DT and CBM+XGboost has a weight on the task of
0.01.

In CEBaB, we use 300 units in the hidden layers, except for CMR where we use 100 units instead.
For the deep neural network, we use 10 hidden layers. We additionally put a weight on the task loss
of 0.01. For CMR, we use a rule embedding size of 100, at most 15 rules per task, a β of 4, and we
reset the selector every 10 epochs. For CBM+DT and CBM+XGboost, the trained CBM+MLP has a
weight on the task of 0.01.

In CUB. we use 100 units in the hidden layers, the deep neural network has 2 hidden layers, and we
use a weight on the task loss of 0.01 for concept-based competitors. For CMR, we use a β of 3, and
additionally down-weigh the loss for negative instances with a weight of 0.005 to deal with the class
imbalance. We use a rule embedding size of 500, at most 3 rules per task, and we reset the selector
every 25 epochs. For CBM+XGBoost, we add a weight of 200 for the positive instances to deal with
the class imbalance. For CBM+DT and CBM+XGboost, we do not train a CBM+MLP, instead using
CMR’s concept predictor.

In MNIST+ and MNIST+∗, we use the CNN as described earlier. We always use 500 units in the
hidden layers, except for CBM+linear and CMR where we use 100 units. For the deep neural network,
we use 10 hidden layers. For CMR, we use a rule embedding size of 1000, at most 20 rules per
task, we reset the selector every 40 epochs, and β is 0.1. In MNIST+ specifically, instead of passing
the CNN’s output embedding to the rule selector p(s|x), we pass the CNN’s concept predictions,
showing that this alternative can also be used effectively when using a complete concept set. For
CBM+DT and CBM+XGboost, we train a CBM+MLP with weight on the task of 0.01 and use its
concept predictions as input to the trees. For the rule intervention experiment on MNIST+ (where
we give CMR a rulebook size that is too small to learn all ground truth rules), we allow it to learn at
most 9 rules per task. Here, the input to the selector is the CNN’s output embedding. In MNIST+∗,
we pass the CNN’s output embedding to the rule selector.

In C-MNIST, we use the second CNN described above. We always use 500 units in the hidden layers,
except for CBM+linear where we use 100 units. For the deep neural network, we use 10 hidden
layers. For DCR and CEM, we put a weight on the task loss of 0.01. For CMR, the rule book has at

19

most 6 rules per task, with rule embeddings of size 1000. We use a β of 1, reset the selector every 40
epochs, and additionally put a weight on the concept reconstruction relative to the concept counts.
The CBM+MLP we train for CBM+DT and CBM+XGboost has a weight of 0.01 on the task.

Hyperparameter search For CBM+DT, we tune the maximum depth parameter, trying all values
between 1 and nC , and report the results with the highest validation accuracy (training accuracy
in absence of a validation set). Parameters for the neural models were chosen that result in the
highest validation accuracy (training accuracy in absence of a validation set) (for CMR the β
parameter, rulebook size and rule embedding size were also chosen based on the learned rules).
For β, we searched within the grid [0.1, 1, 3, 4, 10, 30], for the embedding size within the grid
[10, 100, 300, 500, 1000], and for the rule embedding size within [100, 500, 1000]. For the deep
neural network’s number of hidden layers, we searched within the grid [2, 10, 20]. For unmentioned
parameters in the competitors, we used the default values.

Remaining setup of the rule intervention experiment We first train for 300 epochs. Then, we
check in an automatic way for rules that differ from the ground truth. A representative example
is the rule y3 ← (c0,1) ∧ (c1,2) ∧ (c0,3) ∧ (c1,0)

5, which can be used by the selector for correctly
predicting that 1 + 2 = 3 and 3 + 0 = 3. After this, we add each missing ground truth rule, except
one, and let CMR continue training for 100 epochs. Consequently, CMR improves its originally
learned rules that differed from ground truth to the ground truth ones and learns to correctly select
between the learned and manually added rules. For instance, if CMR originally learned a rule
y3 ← (c0,1) ∧ (c1,2) ∧ (c0,3) ∧ (c1,0), after manually adding y3 ← c0,1 ∧ c1,2 and fine-tuning, the
rule improves to y3 ← c0,3 ∧ c1,0, and CMR will no longer select this rule for the examples 3 + 0,
instead selecting the manually added rule.

C.3 Additional results

C.3.1 Concept interventions

To measure the effectiveness of concept interventions [4], we report task accuracy before and after
replacing the concept predictions with their ground truth. In Table 4, we observe that CMR is
responsive to concept interventions: After the interventions, CMR achieves perfect task accuracy,
outperforming CEM and DCR. We leave a more extensive investigation of concept interventions for
CMR to future work.

Table 4: Task accuracy before and after concept interventions for MNIST+.
BEFORE AFTER

CBM+MLP 97.41±0.55 100.0±0.00
CEM 92.44±0.26 94.68±0.31
DCR 90.70±1.21 94.11±0.83

CMR (ours) 97.25±0.24 100.0±0.00

C.3.2 Concept accuracies

Table 5 gives the concept accuracy of CMR and the competitors on all datasets. CMR’s concept
accuracy is similar to its competitors across all datasets.

C.3.3 Rule interventions with a rule learner

This experiment serves as an ablation study on CMR’s end-to-end rule learning component. We
investigate whether pre-learning rules using an external rule learner and manually integrating them
into CMR’s memory impacts its accuracy. We employ a decision tree as the rule learner, although

5In this notation, for brevity, we only show concepts with a role that is positive (of which none are present in
this rule example) or irrelevant (between parentheses); concepts with negative roles are not shown and are the
remaining ones.

20

Table 5: Concept accuracies for all datasets.
MNIST+ MNIST+∗ C-MNIST CELEBA CUB CEBAB

CBM+linear 99.76±0.02 99.73±0.02 99.72±0.03 87.63±0.02 86.24±0.05 92.69±0.07
CBM+MLP 99.75±0.05 99.71±0.06 99.80±0.02 87.68±0.02 86.32±0.08 92.67±0.07
CBM+DT 99.69±0.04 99.68±0.01 99.81±0.01 87.70±0.04 85.95±0.08 92.83±0.02
CBM+XGB 99.69±0.04 99.68±0.01 99.81±0.01 87.70±0.02 85.95±0.08 92.83±0.02
CEM 99.26±0.04 99.26±0.13 99.77±0.01 87.57±0.04 85.82±0.23 92.46±0.13
DCR 99.21±0.09 99.74±0.02 99.76±0.02 85.35±0.26 85.67±0.15 92.66±0.04

CMR (ours) 99.74±0.02 99.73±0.01 99.82±0.01 86.80±0.22 85.95±0.08 92.70±0.08

other rule learners could be used as well. We use the CEBaB dataset where we only take the first task
and the first 6 concepts.

In Figure 5, we compare CMR’s accuracy against 3 alternatives: (1) using a CBM+DT; (2) injecting
the rules learned by the CBM+DT for predicting a positive class into CMR while preventing CMR
from learning any rules itself; and (3) injecting these same rules but allowing CMR to learn an
additional 15 rules.

CMR’s rule learning component enhances accuracy. When CMR is allowed to learn rules (both
CMR (n=15) and DT→ CMR (n=15)), its accuracy improves significantly compared to when only
the decision tree’s rules are used (DT→ CMR (n=0)).

Injecting rules into CMR does not reduce accuracy when CMR is allowed to learn additional
rules. CMR achieves similar levels of accuracy in both cases where it only learns rules (CMR (n=15)
and when supplemented with the decision tree’s rules (DT→ CMR (n=15)).

CMR’s rule selector enhances accuracy beyond the pre-obtained rules. Even when CMR is
restricted from learning any rules (DT → CMR (n=0)), it still performs better than the original
CBM+DT (DT) because of the rule selector.

For learning the decision tree (and the corresponding CBM used for predicting the concepts before-
hand), we used seed 1.

C.3.4 Accuracy robustness to the number of rules

In this experiment, we investigate the robustness of CMR’s accuracy with respect to the number of
rules hyperparameter (nR). We use the CEBaB dataset where we only consider the first task, and we
train CMR for different values of nR. Figure 6 shows that similar levels of accuracy are obtained
regardless of the chosen nR value.

21

CMR (n=15) DT DT CMR (n=0) DT CMR (n=15)
Model

0.70

0.75

0.80

0.85

0.90

Ta
sk

 T
es

t A
cc

ur
ac

y

Figure 5: Rule interventions on CEBaB where we predict only the first task and employ 6 concepts.
We compare CMR’s accuracy with a CBM using a decision tree (DT) and CMR after adding the
decision tree’s rules to CMR’s memory (DT→ CMR) without any additional learnable rules (n =
0) and when allowing 15 additional learnable rules (n = 15). The mean and standard deviation is
shown over 3 seeds. This means that (1) CMR’s end-to-end rule learning allows it to obtain higher
accuracy than when purely integrating pre-obtained rules from other rule learners (removing CMR’s
rule learning component), (2) just integrating pre-obtained rules in CMR (while still allowing more
rules to be learned) does not decrease its accuracy, and (3) using CMR with only pre-obtained rules
still surpasses the performance of the rules in isolation due to the selector.

5 10 15 20 25
Number of Rules

0.75

0.80

0.85

0.90

0.95

1.00

Ta
sk

 T
es

t A
cc

ur
ac

y

Mean Accuracy
Standard Deviation

Figure 6: Robustness of CMR’s accuracy w.r.t. the number of rules on CEBaB where we predict the
first task. The mean and standard deviation is shown over 3 seeds. High accuracy can be obtained
regardless.

C.3.5 Decoded rulebooks

In this section, we provide examples of the decoded rulebooks after training with seed 1 for our
experiments. We do not provide decoded rulebooks for MNIST+, as these rules always correspond to
the ground truth and are the same over all seeds, i.e. for every task i, CMR learns a rule per possible
pair of digits that correctly sums to that number i. An example of such a rule is y3 ← c1,2 ∧ c2,1 ∧D
where D is a conjunction of nC − 2 conjuncts, where each conjunct is the negation of a different
concept. In the tables in this section, we provide the decoded rulebooks for MNIST+∗, C-MNIST,
CelebA (for all concept subsets, but not the complete rulebook for nC = 37), CUB (not complete
either) and CEBaB. Importantly, for brevity, we use a different notation for the rules for C-MNIST,
MNIST+∗ and CUB: We only show concepts in the rule with as role either positive (as is) or
irrelevance (between parentheses); we do not show concepts with negative roles. For the other
rulebooks, we use the standard notation.

22

C-MNIST CMR has learned that the concepts red and green are irrelevant for predicting even or
odd, learning the (same) ground truth rules for all seeds. We show these rules in Table 6.

MNIST+∗ For brevity, we drop the notation that shows whether the concept is related to the first
or second digit. Firstly, consider the tasks y0 and y1. For these tasks, we are essentially missing all
the concepts we need for the ground truth rules; we can only predict True by learning the rule that
is the negation of all concepts (in the used rule notation, the empty rule), which CMR does. Then,
to be able to predict False, it learns some arbitrary rules. Secondly, consider the tasks y2 to y10. As
we are missing the concepts for digits 0 and 1, we cannot learn all ground truth rules for these tasks.
For example, while CMR can (and does) still learn the rule y4 ← 2 ∧ 2, it is impossible to learn a
rule like y4 ← 1 ∧ 3. Instead, CMR learns the rule y4 ← 3, which can be selected in case it needs to
predict that 1+ 3 = 4. Lastly, consider the tasks y11 to y18. CMR finds all ground truth rules, as they
can be found. We show the learned rules in Figure 7.

CEBaB For predicting negative, CMR has learned as one of its rules the empty rule (rule 1),
signifying that the other rules (prototypes) it has learned are unable to predict True for all training
examples. Similarly, it has learned a rule that always evaluates to False (rules 5, 6 and 7, as food has
to be both good and bad). The remaining rules are prototypes. For instance, rule 2 signifies that for
some examples if food is bad and service is not good, even though ambiance might not be bad and
noise is unknown, the review is negative. Rule 3 signifies that even when food, ambiance and noise
are not bad, if service is not good, the review can be negative. We show the learned rules in Table 7.

CUB We show some of the learned rules in Table 8 and some examples that satisfy these rules in
Figure 8.

CelebA We show the learned rules in Tables 9, 10 and 11. First consider the rules for nC = 1.
For each task, it learns the empty rule, which can always be used to predict True, and two rules that
together can always be used to predict False. As mentioned in the main text, these rules cannot be
considered meaningful, but since we only have one concept, it makes sense that CMR learns these
rules. Consider now the rules for nC = 12. Rules 1, 4 and 7 are rules that always evaluate to False,
as Bald and Blond_Hair cannot be active at the same time. The remaining rules form prototypes.
For nC = 37, we also provide a part of the rulebook.

Table 6: Rulebook for C-MNIST.
even← 0 ∧ (r) ∧ (g)
even← 2 ∧ (r) ∧ (g)
even← 4 ∧ (r) ∧ (g)
even← 6 ∧ (r) ∧ (g)
even← 8 ∧ (r) ∧ (g)

odd← 1 ∧ (r) ∧ (g)
odd← 3 ∧ (r) ∧ (g)
odd← 5 ∧ (r) ∧ (g)
odd← 7 ∧ (r) ∧ (g)
odd← 9 ∧ (r) ∧ (g)

23

y0 ←
y0 ← 3 ∧ 5
y0 ← 6 ∧ 7 ∧ 8 ∧ 9
y0 ← 7 ∧ 4
y0 ← 8

y1 ←
y1 ← 3
y1 ← 9 ∧ 9

y2 ←
y2 ← 2

y3 ← 2
y3 ← 3

y4 ← 2 ∧ 2
y4 ← 3
y4 ← 4

y5 ← 2 ∧ 3
y5 ← 3 ∧ 2
y5 ← 4
y5 ← 5

y6 ← 2 ∧ 4
y6 ← 3 ∧ 3
y6 ← 4 ∧ 2
y6 ← 5
y6 ← 6

(a)

y7 ← 2 ∧ 5
y7 ← 3 ∧ 4
y7 ← 4 ∧ 3
y7 ← 5 ∧ 2
y7 ← 6
y7 ← 7

y8 ← 2 ∧ 6
y8 ← 3 ∧ 5
y8 ← 4 ∧ 4
y8 ← 5 ∧ 3
y8 ← 6 ∧ 2
y8 ← 7
y8 ← 8

y9 ← 2 ∧ 7
y9 ← 3 ∧ 6
y9 ← 4 ∧ 5
y9 ← 5 ∧ 4
y9 ← 6 ∧ 3
y9 ← 7 ∧ 2
y9 ← 8
y9 ← 9

y10 ← 2 ∧ 8
y10 ← 3 ∧ 7
y10 ← 4 ∧ 6

(b)

y10 ← 5 ∧ 5
y10 ← 6 ∧ 4
y10 ← 7 ∧ 3
y10 ← 8 ∧ 2
y10 ← 9

y11 ← 2 ∧ 9
y11 ← 3 ∧ 8
y11 ← 4 ∧ 7
y11 ← 5 ∧ 6
y11 ← 6 ∧ 5
y11 ← 7 ∧ 4
y11 ← 8 ∧ 3
y11 ← 9 ∧ 2

y12 ← 3 ∧ 9
y12 ← 4 ∧ 8
y12 ← 5 ∧ 7
y12 ← 6 ∧ 6
y12 ← 7 ∧ 5
y12 ← 8 ∧ 4
y12 ← 9 ∧ 3

y13 ← 4 ∧ 9
y13 ← 5 ∧ 8
y13 ← 6 ∧ 7

(c)

y13 ← 7 ∧ 6
y13 ← 8 ∧ 5
y13 ← 9 ∧ 4

y14 ← 5 ∧ 9
y14 ← 6 ∧ 8
y14 ← 7 ∧ 7
y14 ← 8 ∧ 6
y14 ← 9 ∧ 5

y15 ← 6 ∧ 9
y15 ← 7 ∧ 8
y15 ← 8 ∧ 7
y15 ← 9 ∧ 6

y16 ← 7 ∧ 9
y16 ← 8 ∧ 8
y16 ← 9 ∧ 7

y17 ← 8 ∧ 9
y17 ← 9 ∧ 8

y18 ← 9 ∧ 9

(d)

Figure 7: Rulebook for MNIST+∗.

Table 7: Rulebook for CEBAB.
(1) negative←
(2) negative← ¬food_unknown∧food_bad∧¬food_good∧¬ambiance_bad∧¬service_good∧noise_unknown∧
¬noise_bad ∧ ¬noise_good
(3) negative← ¬food_bad ∧ ¬ambiance_bad ∧ ¬service_good ∧ noise_unknown ∧ ¬noise_bad ∧ ¬noise_good
(4) negative← ¬food_unknown∧food_bad∧¬food_good∧¬ambiance_good∧¬service_good∧noise_unknown∧
¬noise_bad ∧ ¬noise_good
(5) negative ← food_unknown ∧ food_bad ∧ food_good ∧ ¬ambiance_unknown ∧ ambiance_bad ∧
¬ambiance_good∧ service_unknown∧ service_bad∧ service_good∧¬noise_unknown∧¬noise_bad∧noise_good
(6) negative ← food_unknown ∧ food_bad ∧ food_good ∧ ¬ambiance_unknown ∧ ambiance_bad ∧
¬ambiance_good ∧ service_unknown ∧ service_bad ∧ service_good ∧ ¬noise_unknown ∧ noise_bad ∧ noise_good
(7) negative ← food_unknown ∧ food_bad ∧ food_good ∧ ¬ambiance_unknown ∧ ¬ambiance_bad ∧
¬ambiance_good∧ service_unknown∧ service_bad∧ service_good∧¬noise_unknown∧¬noise_bad∧noise_good

(8) positive←
(9) positive← ¬food_bad ∧ ¬ambiance_bad ∧ noise_unknown ∧ ¬noise_bad ∧ ¬noise_good
(10) positive ← ¬food_unknown ∧ food_bad ∧ ¬food_good ∧ ¬service_good ∧ noise_unknown ∧ ¬noise_bad ∧
¬noise_good
(11) positive← ¬food_unknown ∧ food_bad ∧ ¬food_good ∧ ¬ambiance_bad ∧ noise_unknown ∧ ¬noise_bad ∧
¬noise_good
(12) positive ← food_unknown ∧ food_bad ∧ food_good ∧ ¬ambiance_unknown ∧ ¬ambiance_bad ∧
¬ambiance_good ∧ service_unknown ∧ service_bad ∧ service_good ∧ noise_unknown ∧ ¬noise_bad ∧ noise_good

Table 8: Rulebook for CUB (not complete).
(1) Laysan_Albatross ← underparts_white ∧ breast_solid ∧ breast_white ∧ throat_white ∧ eye_black ∧
bill_length_about_the_same_as_head ∧ belly_white ∧ back_solid ∧ belly_solid ∧ (bill_hooked_seabird) ∧ (wing_grey) ∧
(wing_white)∧(upperparts_grey)∧(upperparts_black)∧(upperparts_white)∧(back_brown)∧(back_grey)∧(back_white)∧
(upper_tail_white) ∧ (head_plain) ∧ (forehead_black) ∧ (forehead_white) ∧ (under_tail_black) ∧ (under_tail_white) ∧
(nape_white) ∧ (size_medium_(9_16_in)) ∧ (tail_solid) ∧ (primary_grey) ∧ (primary_black) ∧ (primary_white) ∧
(bill_black) ∧ (bill_buff) ∧ (crown_black) ∧ (crown_white) ∧ (wing_solid)

(2) Sooty_Albatross ← bill_hooked_seabird ∧ wing_grey ∧ upperparts_grey ∧ breast_solid ∧ upper_tail_grey ∧
throat_black ∧ eye_black ∧ bill_length_about_the_same_as_head∧ forehead_black ∧ under_tail_grey ∧ under_tail_black ∧
size_medium_(9_16_in) ∧ back_solid ∧ tail_solid ∧ belly_solid ∧ leg_grey ∧ bill_black ∧ crown_black ∧ wing_solid

(3) Brewer_Blackbird ← wing_black ∧ upperparts_black ∧ breast_solid ∧ eye_black ∧ under_tail_black ∧
belly_solid ∧ bill_black ∧ (bill_all_purpose) ∧ (wing_white) ∧ (underparts_black) ∧ (back_black) ∧ (upper_tail_black) ∧
(head_plain)∧(breast_black)∧(throat_black)∧(bill_length_about_the_same_as_head)∧(bill_length_shorter_than_head)∧
(forehead_black)∧(nape_black)∧(belly_black)∧(wing_rounded_wings)∧(size_small_(5_9_in))∧(shape_perching_like)∧
(back_solid) ∧ (tail_solid) ∧ (primary_black) ∧ (leg_black) ∧ (crown_black) ∧ (wing_solid)

24

(a) Laysan_Albatross ← underparts_white ∧ breast_solid ∧ breast_white ∧ throat_white ∧
eye_black ∧ bill_length_about_the_same_as_head ∧ belly_white ∧ back_solid ∧ belly_solid ∧
(bill_hooked_seabird) ∧ (wing_grey) ∧ (wing_white) ∧ (upperparts_grey) ∧ (upperparts_black) ∧
(upperparts_white) ∧ (...)

(b) Sooty_Albatross ← bill_hooked_seabird ∧ wing_grey ∧ upperparts_grey ∧ breast_solid ∧
upper_tail_grey ∧ throat_black ∧ eye_black ∧ bill_length_about_the_same_as_head ∧
forehead_black ∧ under_tail_grey ∧ under_tail_black ∧ size_medium_(9_16_in) ∧ back_solid ∧
tail_solid ∧ belly_solid ∧ leg_grey ∧ bill_black ∧ crown_black ∧ wing_solid

(c) Brewer_Blackbird ← wing_black ∧ upperparts_black ∧ breast_solid ∧ eye_black ∧
under_tail_black∧belly_solid∧bill_black∧(bill_all_purpose)∧(wing_white)∧(underparts_black)∧
(back_black) ∧ (upper_tail_black) ∧ (head_plain) ∧ (breast_black) ∧ (throat_black) ∧
(bill_length_about_the_same_as_head) ∧ (...)

Figure 8: Selection of training examples satisfying learned rules for CUB. For brevity, we drop some
of the irrelevant concepts and replace them with (...).

Table 9: Rulebook for CelebA (nC = 1) (seed 1).
(1) Black_Hair ←
(2) Black_Hair ← 5_o_Clock_Shadow
(3) Black_Hair ← ¬5_o_Clock_Shadow

(4) Male←
(5) Male← 5_o_Clock_Shadow
(6) Male← ¬5_o_Clock_Shadow

(7) Wavy_Hair ←
(8) Wavy_Hair ← 5_o_Clock_Shadow
(9) Wavy_Hair ← ¬5_o_Clock_Shadow

25

Table 10: Rulebook for CelebA (nC = 12).
(1) Black_Hair ← 5_o_Clock_Shadow∧Arched_Eyebrows∧Bags_Under_Eyes∧Bald∧Bangs∧Big_Lips∧
Big_Nose ∧ Blond_Hair ∧ Blurry ∧ Brown_Hair ∧ Bushy_Eyebrows ∧ Chubby
(2) Black_Hair ← ¬5_o_Clock_Shadow ∧ ¬Bags_Under_Eyes ∧ ¬Bald ∧ ¬Big_Lips ∧ ¬Big_Nose ∧
¬Bushy_Eyebrows ∧ ¬Chubby
(3) Black_Hair ← ¬Arched_Eyebrows ∧ ¬Blond_Hair ∧ ¬Blurry

(4) Male ← 5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ Bags_Under_Eyes ∧ Bald ∧ Bangs ∧ Big_Lips ∧
Big_Nose ∧ Blond_Hair ∧ Blurry ∧ Brown_Hair ∧ Bushy_Eyebrows ∧ Chubby
(5) Male← ¬5_o_Clock_Shadow∧¬Bags_Under_Eyes∧¬Bald∧¬Blond_Hair∧¬Blurry∧¬Brown_Hair∧
¬Chubby
(6) Male← ¬Bald ∧ ¬Blond_Hair

(7) Wavy_Hair ← 5_o_Clock_Shadow∧Arched_Eyebrows∧Bags_Under_Eyes∧Bald∧Bangs∧Big_Lips∧
Big_Nose ∧ Blond_Hair ∧ Blurry ∧ Brown_Hair ∧ Bushy_Eyebrows ∧ Chubby
(8) Wavy_Hair ← ¬5_o_Clock_Shadow ∧ ¬Bags_Under_Eyes ∧ ¬Bald ∧ ¬Big_Nose ∧ ¬Bushy_Eyebrows ∧
¬Chubby
(9) Wavy_Hair ← ¬Arched_Eyebrows ∧ ¬Bald ∧ ¬Blond_Hair ∧ ¬Blurry ∧ ¬Chubby

Table 11: Rulebook for CelebA (nC = 37).
(1) Black_Hair ← 5_o_Clock_Shadow∧Arched_Eyebrows∧Bags_Under_Eyes∧Bald∧¬Big_Lips∧Chubby∧
¬Double_Chin ∧ ¬Eyeglasses ∧ ¬Gray_Hair ∧ Heavy_Makeup ∧ ¬Mouth_Slightly_Open ∧ ¬No_Beard ∧
Oval_Face ∧ Pale_Skin ∧ ¬Pointy_Nose ∧ Receding_Hairline ∧ ¬Rosy_Cheeks ∧ ¬Wearing_Necklace ∧
¬Wearing_Necktie
(2) Black_Hair ← 5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ Bags_Under_Eyes ∧ ¬Bald ∧ ¬Big_Lips ∧
Big_Nose∧Blond_Hair∧¬Bushy_Eyebrows∧Chubby∧¬Double_Chin∧Eyeglasses∧Goatee∧¬Gray_Hair∧
Heavy_Makeup∧¬Mouth_Slightly_Open∧Mustache∧¬Narrow_Eyes∧¬No_Beard∧Oval_Face∧Pale_Skin∧
¬Pointy_Nose ∧ Receding_Hairline ∧ Rosy_Cheeks ∧ Straight_Hair ∧ Wearing_Hat ∧ Wearing_Lipstick ∧
Wearing_Necklace ∧ ¬Wearing_Necktie ∧ Attractive ∧ ¬Y oung
(3) Black_Hair ← ¬Arched_Eyebrows ∧ ¬Bangs ∧ ¬Blond_Hair ∧ ¬Blurry ∧ ¬Heavy_Makeup ∧
¬Narrow_Eyes∧¬Pale_Skin∧¬Pointy_Nose∧¬Rosy_Cheeks∧¬Wearing_Earrings∧¬Wearing_Necklace
(4) Black_Hair ← ¬Bald ∧ ¬Big_Lips ∧ ¬Blurry ∧ ¬Chubby ∧ ¬Double_Chin ∧ ¬Eyeglasses ∧
¬Goatee∧¬Gray_Hair∧¬Mustache∧¬Narrow_Eyes∧¬Pale_Skin∧¬Pointy_Nose∧¬Receding_Hairline∧
¬Rosy_Cheeks ∧ ¬Sideburns ∧ ¬Wearing_Necklace ∧ ¬Wearing_Necktie

(5) Male← 5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ Bags_Under_Eyes ∧ ¬Bald ∧ Big_Lips ∧ Big_Nose ∧
Blond_Hair ∧ Blurry ∧ Bushy_Eyebrows ∧ Chubby ∧ ¬Double_Chin ∧ Eyeglasses ∧ Goatee ∧ ¬Gray_Hair ∧
Heavy_Makeup ∧ High_Cheekbones ∧ Mouth_Slightly_Open ∧ Mustache ∧ ¬Narrow_Eyes ∧ ¬No_Beard ∧
Oval_Face∧Pale_Skin∧¬Pointy_Nose∧Receding_Hairline∧¬Rosy_Cheeks∧Straight_Hair∧Wearing_Hat∧
Wearing_Lipstick ∧Wearing_Necklace ∧ ¬Wearing_Necktie ∧ Attractive ∧ ¬Y oung
(6) Male ← 5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ ¬Bags_Under_Eyes ∧ ¬Big_Lips ∧ Chubby ∧
¬Double_Chin ∧ ¬Eyeglasses ∧ ¬Goatee ∧ ¬Gray_Hair ∧ High_Cheekbones ∧ No_Beard ∧ ¬Pointy_Nose ∧
Receding_Hairline ∧ ¬Rosy_Cheeks ∧ ¬Sideburns ∧ ¬Wearing_Necklace ∧ ¬Wearing_Necktie
(7) Male ← ¬5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ ¬Bags_Under_Eyes ∧ ¬Bald ∧ Bangs ∧
Big_Lips ∧ Big_Nose ∧ Brown_Hair ∧ Bushy_Eyebrows ∧ ¬Chubby ∧ ¬Double_Chin ∧ Eyeglasses ∧
Goatee ∧ Heavy_Makeup ∧ Narrow_Eyes ∧ ¬No_Beard ∧ Oval_Face ∧ Pale_Skin ∧ Receding_Hairline ∧
Wearing_Earrings ∧ ¬Wearing_Lipstick ∧ ¬Wearing_Necklace ∧ ¬Wearing_Necktie ∧ ¬Y oung
(8) Male← ¬Bald∧¬Blond_Hair∧¬Blurry∧¬Gray_Hair∧¬Mustache∧¬Narrow_Eyes∧¬Pale_Skin∧
¬Receding_Hairline ∧ ¬Rosy_Cheeks ∧ ¬Wearing_Necklace

(9) Wavy_Hair ← 5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ ¬Bags_Under_Eyes ∧ Bangs ∧ Big_Lips ∧
Brown_Hair ∧ Bushy_Eyebrows ∧ ¬Chubby ∧ ¬Double_Chin ∧ Eyeglasses ∧ Goatee ∧ Heavy_Makeup ∧
¬No_Beard ∧ ¬Pointy_Nose ∧ Receding_Hairline ∧ Rosy_Cheeks ∧ Sideburns ∧ ¬Wearing_Earrings ∧
¬Wearing_Necklace ∧ ¬Wearing_Necktie ∧ ¬Y oung
(10) Wavy_Hair ← 5_o_Clock_Shadow ∧ Arched_Eyebrows ∧ ¬Big_Lips ∧ Blond_Hair ∧ Blurry ∧
¬Brown_Hair∧¬Bushy_Eyebrows∧Chubby∧¬Double_Chin∧Eyeglasses∧¬Gray_Hair∧Heavy_Makeup∧
¬Mustache ∧ ¬Narrow_Eyes ∧ ¬No_Beard ∧ ¬Pointy_Nose ∧ Receding_Hairline ∧ Straight_Hair ∧
Wearing_Lipstick ∧ ¬Wearing_Necklace ∧ ¬Wearing_Necktie ∧ Attractive ∧ ¬Y oung
(11) Wavy_Hair ← ¬5_o_Clock_Shadow ∧ ¬Bags_Under_Eyes ∧ ¬Bald ∧ ¬Big_Nose ∧ ¬Blurry ∧
¬Bushy_Eyebrows ∧ ¬Chubby ∧ ¬Double_Chin ∧ ¬Eyeglasses ∧ ¬Goatee ∧ ¬Gray_Hair ∧ ¬Mustache ∧
¬Narrow_Eyes∧¬Pale_Skin∧¬Receding_Hairline∧¬Sideburns∧¬Straight_Hair ∧¬Wearing_Necklace∧
¬Wearing_Necktie
(12) Wavy_Hair ← ¬Bald∧¬Chubby∧¬Mustache∧¬Narrow_Eyes∧¬Pale_Skin∧¬Receding_Hairline∧
¬Rosy_Cheeks ∧ ¬Wearing_Necklace

26

D Code, licenses and resources

For our experiments, we implemented the models in Python 3.11.5 using open source libraries.
This includes PyTorch v2.1.1 (BSD license) [48], PyTorch-Lightning v2.1.2 (Apache license 2.0),
scikit-learn v1.3.0 (BSD license) [49] and xgboost v2.0.3 (Apache license 2.0). We used CUDA
v12.4. Plots were made using Matplotlib v3.8.0 (BSD license) [50]. Our code is publicly available at
https://github.com/daviddebot/CMR under the Apache License, Version 2.0.

All datasets we used are freely available on the web with licenses:

• MNIST - CC BY-SA 3.0 DEED,
• CEBaB - CC BY 4.0 DEED,
• CUB - MIT License 6,
• CelebA - The CelebA dataset is available for non-commercial research purposes only7.

We will not further distribute them.

The experiments for MNIST+, MNIST+∗, C-MNIST, CelebA and CEBaB were run on a machine
with an NVIDIA GeForce GTX 1080 Ti, Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 128
GB RAM. The experiment for CUB and the fine-tuning of the BERT model used for the CEBaB
embeddings were run on a machine with i7-10750H CPU, 2.60GHz × 12, GeForce RTX 2060
GPU with 16 GB RAM. Table 12 shows the estimated total computation time for a single run per
experiment.

Table 12: Estimated total computation time for a single run of each experiment.
Experiment Time (hours)
CelebA 3.7
CUB 1.8
CEBaB 0.1
MNIST+ 4.1
MNIST+ rule int. 0.2
MNIST+∗ 4.1
C-MNIST 4.4

6https://huggingface.co/datasets/cassiekang/cub200_dataset
7https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

27

https://github.com/daviddebot/CMR
https://huggingface.co/datasets/cassiekang/cub200_dataset
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The structure of our model (neural nets + interpretable memory), discussion
(expressivity, interpretability and verification) and experiments (research questions) closely
follow the claimed contributions in both abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
[Yes]
Justification: This is done in our conclusion (Section 8).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

Answer: [Yes]
Justification: Theorem 4.1 is proven in Section 4.1 and Theorem 5.1 is proven in Appendix
A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Limited details are given in Section 6, with the remaining details provided in
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is provided at https://github.com/daviddebot/CMR. The data
is publicly available on the internet, and we do not redistribute it. This is mentioned in the
main text.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details are given in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the standard-deviations over multiple seeds in all our tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

30

https://github.com/daviddebot/CMR
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported the details of the machines exploited in the experiments in
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not raise any ethical issue.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our conclusion clearly states the broader impact of our work with reference to
interpretable and trustworthy AI.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

31

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned and respected all the licences of software and data in Appendix
D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

32

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documentation for the code is provided in the form of a README file in the
corresponding repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

33

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Preliminary
	Model
	Probabilistic graphical model
	Rule selector
	Task predictor

	Expressivity, interpretability and verification
	Expressivity
	Interpretability
	Verification

	Learning and inference
	Learning problem
	Inference

	Experiments
	Experimental setting
	Key findings & results
	Generalization
	Explanations and intervention

	Verification

	Related works
	Conclusion
	Maximum likelihood derivation
	Implementation and optimization details
	Experiments
	Datasets
	Training
	Additional results
	Concept interventions
	Concept accuracies
	Rule interventions with a rule learner
	Accuracy robustness to the number of rules
	Decoded rulebooks

	Code, licenses and resources

